Investigating COVID-19 with R: data analysis and simulations

Methodological presentation
R-Ladies Miami Meetup, May 28th 2020

The extended abstract of the presentation was loosely followed. Here is the presentation mind-map:

MainMindMap

(Note that mind-map’s PDF has hyperlinks. Also, see the folder Presentation-aids. )

The organizers and I did a poll for what people want to hear. After discussing the results of the 15 votes from that poll we decided the presentation to be a methodological one instead of a know-how one.

Approximately 30% of the presentation was based on the R-project “COVID-19-modeling-in-R”, [AA1].

Approximately 30% of the presentation was based on an R-programmed software monad for epidemiology compartmental models, ECMMon-R, [AAr2].

For the rest were used frameworks, simulations, and graphics made with Mathematica, [AAr1].

The presentation was given online (because of COVID-19) using Zoom. 90 people registered. Nearly 40 showed up (and maybe 20 stayed throughout.)

Here is a link to the video recording.

Screenshots

Here are screenshots of statistics used in the introduction:

References

Coronavirus

[Wk1] Wikipedia entry, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

[Wk2] Wikipedia entry, Coronavirus disease 2019.

Modeling

[Wk3] Wikipedia entry, Compartmental models in epidemiology.

[Wk4] Wikipedia entry, System dynamics.

R code/software

[KS1] Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer, “deSolve: Solvers for Initial Value Problems of Differential Equations (‘ODE’, ‘DAE’, ‘DDE’)”, CRAN.

[AA1] Anton Antonov, “COVID-19-modeling-in-R”, 2020, SystemModeling at GitHub.

[AAr1] Anton Antonov, Coronavirus-propagation-dynamics, 2020, SystemModeling at GitHub.

[AAr2] Anton Antonov, Epidemiology Compartmental Modeling Monad in R, 2020, ECMMon-R at GitHub.