Comparison of PCA, NNMF, and ICA over image de-noising

Introduction

In a previous blog post, [1], I compared Principal Component Analysis (PCA) / Singular Value Decomposition (SVD) and Non-Negative Matrix Factorization (NNMF) over a collection of noised images of digit handwriting from the MNIST data set, [3], which is available in Mathematica.

This blog post adds to that comparison the use of Independent Component Analysis (ICA) proclaimed in my previous blog post, [1].

Computations

The ICA related additional computations to those in [1] follow.

First we load the package IndependentComponentAnalysis.m :

Import["https://raw.githubusercontent.com/antononcube/\
MathematicaForPrediction/master/IndependentComponentAnalysis.m"]

From that package we can use the function IndependentComponentAnalysis to find components:

{S, A} = IndependentComponentAnalysis[Transpose[noisyTestImagesMat], 9, PrecisionGoal -> 4.5];
Norm[noisyTestImagesMat - Transpose[S.A]]/Norm[noisyTestImagesMat]
(* 0.592739 *)

Let us visualize the norms of the mixing matrix A :

norms = Norm /@ A;
ListPlot[norms, PlotRange -> All, PlotLabel -> "Norms of A rows", 
    PlotTheme -> "Detailed"] // 
        ColorPlotOutliers[TopOutliers@*HampelIdentifierParameters]
pos = OutlierPosition[norms, TopOutliers@*HampelIdentifierParameters]

Norms of the mixing matrix

Next we can visualize the found "source" images:

ncol = 2;
Grid[Partition[Join[
 MapIndexed[{#2[[1]], Norm[#], 
   ImageAdjust@Image[Partition[#, dims[[1]]]]} &, 
 Transpose[S]] /. (# -> Style[#, Red] & /@ pos),
Table["", {ncol - QuotientRemainder[Dimensions[S][[2]], ncol][[2]]}]
], ncol], Dividers -> All]

ICA found source images of 6 and 7 images matrix

After selecting several of source images we zero the rest by modifying the matrix A:

pos = {6, 7, 9};
norms = Norm /@ A;
dA = DiagonalMatrix[
 ReplacePart[ConstantArray[0, Length[norms]], Map[List, pos] -> 1]];
newMatICA = 
 Transpose[Map[# + Mean[Transpose[noisyTestImagesMat]] &, S.dA.A]];
  denoisedImagesICA = Map[Image[Partition[#, dims[[2]]]] &, newMatICA];

Visual comparison of de-noised images

Next we visualize the ICA de-noised images together with the original images and the SVD and NNMF de-noised ones.

There are several ways to present that combination of images.

Grayscale 6 and 7 images, orginal, noised, PCA, NNMF, ICA de-noised

Binarized 6 and 7 images, orginal, noised, PCA, NNMF, ICA de-noised

Image collage of orginal, noised, PCA, NNMF, ICA de-noised 6 and 7 images

Comparison using classifiers

We can further compare the de-noising results by building digit classifiers and running them over the de-noised images.

icaCM = ClassifierMeasurements[digitCF, 
    Thread[(Binarize[#, 0.55] &@*ImageAdjust@*ColorNegate /@ 
        denoisedImagesICA) -> testImageLabels]]

We can see that with ICA we get better results than with PCA/SVD, probably not as good as NNMF, but very close.

Classifier comparison over PCA, NNMF, ICA de-noised images of 6 and 7

All images of this blog post

Computations results for ICA application of noised handwriting images of 6 an 7

References

[1] A. Antonov, "Comparison of PCA and NNMF over image de-noising", (2016), MathematicaForPrediction at WordPress.

[2] A. Antonov, "Independent Component Analysis for multidimensional signals", (2016), MathematicaForPrediction at WordPress.

[3] Wikipedia entry, MNIST database.

Advertisements

One thought on “Comparison of PCA, NNMF, and ICA over image de-noising

  1. Pingback: Mathematica vs. R at GitHub | Mathematica for prediction algorithms

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s